cos ( 2 π / 17 ) \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\cos(2\pi/17) cos ( 2 π /17 ) This was a little adventure in math I took some days before university
entrance exam. (useless in hindsight) But anyways, I was reading Algebra
by Michael Artin and wondering, how bad it would be to calculate cos ( 2 π / 17 ) \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\cos(2\pi/17) cos ( 2 π /17 ) ?
I mean, it's one thing to understand that it's possible to draw a heptadecagon with
a ruler and a compass, but another to calculate the cosine of that angle you need,
and write it down in radicals. (drawing it physically is also a different beast, but
it was interesting enough for my deskmate at the time to do it)
First, a bit of recap: for an odd prime p \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}p p , the minimal polynomial of ζ p \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\zeta_p ζ p
over Q \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\Q Q is x p − 1 + x p − 2 + ⋯ + 1 \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}x^{p-1}+x^{p-2}+\cdots+1 x p − 1 + x p − 2 + ⋯ + 1 , and Gal ( Q ( ζ p ) / Q ) ≈ Z p × ≈ C p − 1 \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\Gal(\Q(\zeta_p)/\Q)
\approx\Z_p^\times\approx C_{p-1} Gal ( Q ( ζ p ) / Q ) ≈ Z p × ≈ C p − 1 . Since drawing with a ruler and compass does quadratic
extensions in the field of reachable length ratios, to be able to draw a regular p \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}p p -gon
requires a subgroup series in C p − 1 \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}C_{p-1} C p − 1 such that every element divided by the previous
(smaller) element is ( C 2 ) \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}(C_2) ( C 2 ) . This means p − 1 = 2 k \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}p-1=2^k p − 1 = 2 k .
Sometimes you see it stated the same except k \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}k k itself is also a power of 2.
Both statements are equivalent.
Since cyclic groups are 1-gen,
we can indeed find such a subgroup series for a Galois group with the correct order, so
all such regular polygons can be drawn with a ruler and a compass.
Gauss had proved that a regular heptadecagon can be drawn with a ruler and a compass in 1796!
17 is not too small nor too large, so drawing a regular heptadecagon is a reasonable choice
for time-killing.
So! To compute our holy grail (right now) that is cos ( 2 π / 17 ) \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\cos(2\pi/17) cos ( 2 π /17 ) , we will choose
appropriate generators of the intermediate fields, but before that we would have to find out
about subgroups of Z 17 × \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\Z_{17}^\times Z 17 × . g = 3 \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}g=3 g = 3 is a primitive root modulo 17, and
by taking powers of it, we can derive that the subgroups are Z 17 × \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\Z_{17}^\times Z 17 × ,
{ ± 1 , ± 2 , ± 4 , ± 8 } \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\{\pm1, \pm2, \pm4, \pm8\} { ± 1 , ± 2 , ± 4 , ± 8 } , { ± 1 , ± 4 } \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\{\pm1, \pm4\} { ± 1 , ± 4 } , { ± 1 } \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\{\pm1\} { ± 1 } , and
{ 1 } \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\{1\} { 1 } . By taking the sum of ζ \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\zeta ζ raised to the power of each element in
the corresponding subgroup of Z 17 × \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\Z_{17}^\times Z 17 × , we get an element that's not in the
smaller subfield of Q ( ζ ) \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\Q(\zeta) Q ( ζ ) . They are suitable for use as the generating elements
corresponding to the subfield. For brievity we can define [ a 1 , a 2 , ⋯ , a n ] \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}[a_1, a_2, \cdots, a_n] [ a 1 , a 2 , ⋯ , a n ]
as ∑ ζ a i \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\sum \zeta^{a_i} ∑ ζ a i , and the relationship between these numbers and groups can
be drawn as below, with the horizontal line representing Galois correspondence:
To compute A , B , C \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}A, B, C A , B , C , the basic strategy is to compute its minimal polynomial
over the previous field. Because we already know it's quadratic, it's enough to compute
the square of the generating element and express it as a linear combination of that
element and 1 with coefficients in the previous field. Do note that when the coefficient
field is not Q \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\Q Q , it might be better to expand out the terms so you can eyeball
coefficients in Q \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\Q Q , instead of having to do computation in an unfamiliar field.
In theory, with this method, we would need to compute B C 2 \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}BC^2 B C 2 and unholy stuff like
that, but luckily not! Here are the equations I found at the end:
A 2 + A − 4 = 0 , \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}A^2+A-4=0, A 2 + A − 4 = 0 ,
( A + 4 ) B 2 − ( 3 A + 4 ) B − ( A + 4 ) = 0 \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}(A+4)B^2-(3A+4)B-(A+4)=0 ( A + 4 ) B 2 − ( 3 A + 4 ) B − ( A + 4 ) = 0
2 C 2 − 2 B C + ( B 2 + B − A − 4 ) = 0 \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}2C^2-2BC+(B^2+B-A-4)=0 2 C 2 − 2 BC + ( B 2 + B − A − 4 ) = 0
C = 2 cos 2 π 17 \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}C=2\cos\frac{2\pi}{17} C = 2 cos 17 2 π
Solving these equations one by one, choosing signs maybe by estimating or reaching
out to the scientific calculator, we obtain
cos 2 π 17 = 17 − 1 + 34 − 2 17 + 4 ( 3 17 + 17 ) − ( 17 + 3 ) 8 ( 17 − 17 ) 16 . \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\cos\frac{2\pi}{17}=\frac{\sqrt{17}-1+\sqrt{34-2\sqrt{17}}+\sqrt{4(3\sqrt{17}+17)-(\sqrt{17}+3)\sqrt{8(17-\sqrt{17})}}}{16}. cos 17 2 π = 16 17 − 1 + 34 − 2 17 + 4 ( 3 17 + 17 ) − ( 17 + 3 ) 8 ( 17 − 17 ) .