cos ( 2 π / 17 ) \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\cos(2\pi/17) cos ( 2 π /17 ) 人真的可以很无聊.本来想着复习一下高考的,一不留神又打开了数论书,一不留神就开始算 cos ( 2 π / 17 ) \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\cos(2\pi/17) cos ( 2 π /17 ) 了,结果快整个上午都没了.虽然 ζ 17 \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\zeta_{17} ζ 17 可以用尺规作出很好理解,在计算的过程中还是遇到了一些困难.
先复习一下:若 p \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}p p 是奇质数,ζ p \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\zeta_p ζ p 在 Q \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\Q Q 上的最小多项式是 x p − 1 + x p − 2 + ⋯ + 1 \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}x^{p-1}+x^{p-2}+\cdots+1 x p − 1 + x p − 2 + ⋯ + 1 ,Gal ( Q ( ζ p ) / Q ) ≈ Z p × ≈ C p − 1 \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\Gal(\Q(\zeta_p)/\Q)\approx\Z_p^\times\approx C_{p-1} Gal ( Q ( ζ p ) / Q ) ≈ Z p × ≈ C p − 1 ,而尺规可以做的域扩张都是二次扩域.如果可以作出 p \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}p p 边形,就要求在 C p − 1 \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}C_{p-1} C p − 1 里能找到从 { 1 } \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\{1\} { 1 } 开始,到 C p − 1 \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}C_{p-1} C p − 1 的子群链,使得下一个子群除以上一个子群是 C 2 \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}C_2 C 2 .这意味着 p − 1 = 2 k \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}p-1=2^k p − 1 = 2 k .
1796 年高斯就发现了正十七边形可以用尺规作出.十七边形是最小的比较难作的正质数边形,所以用来打发时间的话是个比较好的选择.
为了计算出 cos ( 2 π / 17 ) \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\cos(2\pi/17) cos ( 2 π /17 ) ,我们要选择 Gal ( Q ( ζ 17 ) / Q ) \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\Gal(\Q(\zeta_{17})/\Q) Gal ( Q ( ζ 17 ) / Q ) 里一条合适的中间域链以及合适的生成元.模 17 \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}17 17 的一个原根是 g = 3 \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}g=3 g = 3 .如果用 Z p × \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\Z_p^\times Z p × 的子群表示,我们要从 Q \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\Q Q 对应的 { g k } \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\{g^k\} { g k } 开始,扩展到 { g 2 k } \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\{g^{2k}\} { g 2 k } ,再到 { g 4 k } \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\{g^{4k}\} { g 4 k } 和 { g 8 k } \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\{g^{8k}\} { g 8 k } .因为 cos ( 2 π / 17 ) = ( ζ + ζ − 1 ) / 2 \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\cos(2\pi/17)=(\zeta+\zeta^{-1})/2 cos ( 2 π /17 ) = ( ζ + ζ − 1 ) /2 ,到这一步就可以了.生成元很好找,我选的是 ζ \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\zeta ζ 在所有的自同构下像的和.下面为了简便,用 [ a 1 , a 2 , ⋯ , a n ] \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}[a_1, a_2, \cdots, a_n] [ a 1 , a 2 , ⋯ , a n ] 代表 ∑ ζ a i \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\sum \zeta^{a_i} ∑ ζ a i .
为了求出 A , B , C \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}A, B, C A , B , C ,我们要求出它们在前一个域上的最小多项式.我们只要求出它们的平方,然后消元就可以了.要注意的是求 B \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}B B 或 C \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}C C 的时候多项式的系数就可以不是有理数了.我的方法是在求 B \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}B B 的时候不止把 B 2 , B \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}B^2, B B 2 , B 表示出来,而且要表示出 A B 2 , A B \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}AB^2, AB A B 2 , A B 表示出来.按理来讲求 C \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}C C 的时候也需要这样,而且要计算 B 3 \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}B^3 B 3 ,但非常幸运,我只算了两个式子就可以消去不在系数域里的数了.最后找到的方程如下:
A 2 + A − 4 = 0 , \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}A^2+A-4=0, A 2 + A − 4 = 0 ,
( A + 4 ) B 2 − ( 3 A + 4 ) B − ( A + 4 ) = 0 \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}(A+4)B^2-(3A+4)B-(A+4)=0 ( A + 4 ) B 2 − ( 3 A + 4 ) B − ( A + 4 ) = 0
2 C 2 − 2 B C + ( B 2 + B − A − 4 ) = 0 \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}2C^2-2BC+(B^2+B-A-4)=0 2 C 2 − 2 BC + ( B 2 + B − A − 4 ) = 0
C = 2 cos 2 π 17 \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}C=2\cos\frac{2\pi}{17} C = 2 cos 17 2 π
所以
cos 2 π 17 = 17 − 1 + 34 − 2 17 + 4 ( 3 17 + 17 ) − ( 17 + 3 ) 8 ( 17 − 17 ) 16 . \providecommand\Gal{}\renewcommand\Gal[0]{\operatorname{Gal}}\providecommand\tr{}\renewcommand\tr[0]{\operatorname{tr}}\providecommand\GL{}\renewcommand\GL[0]{\operatorname{GL}}\providecommand\SL{}\renewcommand\SL[0]{\operatorname{SL}}\providecommand\PSL{}\renewcommand\PSL[0]{\operatorname{PSL}}\providecommand\SO{}\renewcommand\SO[0]{\operatorname{SO}}\providecommand\SU{}\renewcommand\SU[0]{\operatorname{SU}}\providecommand\im{}\renewcommand\im[0]{\operatorname{im}}\providecommand\cof{}\renewcommand\cof[0]{\operatorname{cof}}\providecommand\End{}\renewcommand\End[0]{\operatorname{End}}\providecommand\Tor{}\renewcommand\Tor[0]{\operatorname{Tor}}\providecommand\rk{}\renewcommand\rk[0]{\operatorname{rk}}\providecommand\Hom{}\renewcommand\Hom[0]{\operatorname{Hom}}\providecommand\diag{}\renewcommand\diag[0]{\operatorname{diag}}\providecommand\vspan{}\renewcommand\vspan[0]{\operatorname{span}}\providecommand\lcm{}\renewcommand\lcm[0]{\operatorname{lcm}}\providecommand\id{}\renewcommand\id[0]{\operatorname{id}}\providecommand\Ab{}\renewcommand\Ab[0]{\textsf{Ab}}\providecommand\Fld{}\renewcommand\Fld[0]{\textsf{Fld}}\providecommand\Mod{}\renewcommand\Mod[1]{#1\textsf{-Mod}}\providecommand\Grp{}\renewcommand\Grp[0]{\textsf{Grp}}\providecommand\dSet{}\renewcommand\dSet[1]{#1\textsf{-Set}}\providecommand\Set{}\renewcommand\Set[0]{\textsf{Set}}\providecommand\SetStar{}\renewcommand\SetStar[0]{\textsf{Set*}}\providecommand\Vect{}\renewcommand\Vect[1]{#1\textsf{-Vect}}\providecommand\Alg{}\renewcommand\Alg[1]{#1\textsf{-Alg}}\providecommand\Ring{}\renewcommand\Ring[0]{\textsf{Ring}}\providecommand\R{}\renewcommand\R[0]{\mathbb{R}}\providecommand\C{}\renewcommand\C[0]{\mathbb{C}}\providecommand\N{}\renewcommand\N[0]{\mathbb{N}}\providecommand\Z{}\renewcommand\Z[0]{\mathbb{Z}}\providecommand\Q{}\renewcommand\Q[0]{\mathbb{Q}}\providecommand\F{}\renewcommand\F[0]{\mathbb{F}}\providecommand\sfC{}\renewcommand\sfC[0]{\mathsf{C}}\providecommand\vphi{}\renewcommand\vphi[0]{\varphi}\cos\frac{2\pi}{17}=\frac{\sqrt{17}-1+\sqrt{34-2\sqrt{17}}+\sqrt{4(3\sqrt{17}+17)-(\sqrt{17}+3)\sqrt{8(17-\sqrt{17})}}}{16}. cos 17 2 π = 16 17 − 1 + 34 − 2 17 + 4 ( 3 17 + 17 ) − ( 17 + 3 ) 8 ( 17 − 17 ) .